MATH 135 - QUIZ 8 SOLUTIONS - JAMES HOLLAND

Question 1. Consider $f(x)=x^{3}-3 x^{2}-9 x+7$.
i. What are the critical points of f ?
ii. Classify the critical points as relative minimums, maximums, or neither using the second-derivative test.
iii. Classify the critical points as relative minimums, maximums, or neither using the first-derivative test.

Solution .:

i. $f^{\prime}(x)=3 x^{2}-6 x-9$. This is always defined. $f^{\prime}(x)=0$ iff $x^{2}-2 x-3=0$, iff $(x-3)(x+1)=0$, which happens iff $x=3$ or $x=-1$. So 3 and -1 are the only critical points.
ii. $f^{\prime \prime}(x)=6 x-6$ so that $f^{\prime \prime}(-1)=-12<0$ implies $x=-1$ is a relative maximum, and $f^{\prime \prime}(3)=12>0$ implies $x=3$ is a relative minimum.
iii. We need to check whether $f^{\prime}(x)$ is positive or negative in the three relevant intervals: $(-\infty,-1),(-1,3)$, and $(3, \infty)$.

- For $x<-1, x-3$ and $x+1$ are both negative. Hence $f^{\prime}(x)=3(x-3)(x+1)$ is the product of two negative numbers, and is thus positive.
- For $-1<x<3,0<x+1$ and $x-3<0$. Hence $f^{\prime}(x)=3(x-3)(x+1)$ is the product of a positive and a negative number, and is thus negative.
- For $x>3, x-3$ and $x+1$ are both positive, and therefore $f^{\prime}(x)=3(x-3)(x+1)$ is positive. So by the first-derivative test, $x=-1$ gives a relative maximum and $x=3$ gives a relative minimum.

Question 2. Consider $f(x)=x \tan (1 / x)$.
i. Determine the horizontal asymptotes of f.
ii. Determine the vertical asymptotes of f.

Solution .:.

i. The horizonal asymptotes of f are given by the limits $\lim _{x \rightarrow \infty} f(x)$ and $\lim _{x \rightarrow-\infty} f(x)$.

For the first limit, $\lim _{x \rightarrow \infty} x \tan (1 / x)=\lim _{x \rightarrow \infty} \frac{x \sin (1 / x)}{\cos (1 / x)}$. As x goes to $\infty, t=1 / x$ goes to 0 . So this limit is the same as

$$
\lim _{x \rightarrow \infty} \frac{\sin (1 / x)}{\frac{1}{x} \cos (1 / x)}=\lim _{t \rightarrow 0} \frac{\sin (t)}{t} \cdot \cos (t)=1 \cdot 1=1
$$

For the second limit, the same reasoning applies since $\lim _{x \rightarrow-\infty} 1 / x=0$ so that $\lim _{x \rightarrow-\infty} x \tan (1 / x)=$ 1. Thus $y=1$ is the only horizontal asymptote of f.
ii. $f(x)$ is undefined iff $x \sin (1 / x) / \cos (1 / x)$ is undefined, which happens iff $\cos (1 / x)=0$. This requires $1 / x=\pi n$ for some integer n, meaning $x=\frac{1}{\pi n}$ for some integer n. These are the vertical asymptotes since $\lim _{x \rightarrow 1 /(\pi n)} x \sin (1 / x)=\frac{1}{\pi n} \cdot \pm 1 \neq 0$.

